
Exercise Set Solutions #3
“Discrete Mathematics” (2025)

E1. (a) How many positive integers are there that divide 1040 or 2030 ?

Solution: Note that 1040 = 240 · 540 and 2030 = 260 · 530. Consider the following sets

A =
{
a ∈ N : a | 1040

}
, B =

{
a ∈ N : a | 2030

}
We have to count |A ∪B|. By inclusion-exclusion principle, we have

|A ∪B| = |A|+ |B| − |A ∩B|.

Remember that the number of divisors of n = pa11 · · · pakk is (a1 + 1) · · · (ak + 1). That
means, |A| = 41 · 41 = 1681 and |B| = 61 · 31 = 1891. On the other hand,

|A ∩B| =
{
a ∈ N : a | 1040 and a | 2030

}
=
{
a ∈ N : a | 240 · 530

}
That means, |A ∩B| = 41 · 31 = 1271. Altogether, we obtain

|A ∪B| = 1681 + 1891− 1271 = 2301

(b) How many positive integers less than or equal to 385 are there such that they are not divisible
by neither of the following numbers: 5, 7, 11 ?

Solution: 385 = 5 · 7 · 11. Using Euler’s function (recall its definition), we obtain that
the result is

385 ·
(
1− 1

5

)
·
(
1− 1

7

)
·
(
1− 1

11

)
= 4 · 6 · 10 = 240

E2. Determine the number of permutations of the set [n]

(a) with exactly one fixed point, and

Solution: Let Ai be the set of permutations which fix only i. Since Ai has no other fixed
points apart from i, we obtain that its cardinality is equal to the cardinality of the set of
all the permutations of an (n − 1)-element set with no fixed point (in fact, the set of the
other elements except i ). But, from lecture notes (section 3.2), we already know that this
number for n− 1 is

(n− 1)!

(
1

2!
− 1

3!
+ . . .+ (−1)n−1 1

(n− 1)!

)
.

On the other hand, there are n choices for the fixed point and no two such permutations
can coincide (since it is only one fixed point). That means, the desired result is

n!

(
1

2!
− 1

3!
+ . . .+ (−1)n−1 1

(n− 1)!

)
.

(b) with exactly k fixed points.



Solution: Applying the same idea as for (1), we obtain(
n

k

)
(n− k)!

(
1

2!
− 1

3!
+ . . .+ (−1)n−k 1

(n− k)!

)
.

E3. How many functions f : [n] → [n] are there that are nondecreasing? That is, they satisfy
i < j ⇒ f(i) ≤ f(j).

Solution: Consider the following numbers.

x1 = f(1)− 1

x2 = f(2)− f(1)

x3 = f(3)− f(2)

...

xn = f(n)− f(n− 1)

xn+1 = n− f(n).

Then, we see that
∑n+1

i=1 xn = n− 1 and each xi ≥ 0. Each such touple of (x1, . . . , xn+1) gives
us a nondecreasing function. Hence, the problem amounts to simply counting the set{

(x1, . . . , xn+1) ∈ Z≥0 |
n+1∑
i=1

xi = n− 1

}
.

The cardinality of this is equal to(
(n+ 1) + (n− 1)− 1

n− 1

)
=

(
2n− 1

n− 1

)

E4. Assume that k > n. Prove that the number of surjective functions from [k] to [n] is given by

n∑
j=0

(
n

j

)
(−1)j(n− j)k

Solution: Let Aj the set of functions from [k] to [n] taking values in a subset of cardinal j
in [n] (in other words, al the functions f : [k] → [n] such that |f([k])| ≤ j). Thus, A =

⋃
j Aj

represents all functions from [k] to [n]. The number of surjective functions corresponds to
A \

⋃n−1
j=1 Aj , therefore by inclusion-exclusion principle

|A\
n−1⋃
j=1

Aj | = |A|+
n−1∑
j=1

(−1)n−j |Aj | = nk+

n−1∑
j=1

(−1)n−j

(
n

j

)
jk =

n∑
j=0

(−1)n−j

(
n

j

)
jk =

n∑
j=0

(
n

j

)
(−1)j(n−j)k

concluding.

E5. Prove the following.

(a) If φ(n) divides n− 1 then n = p1 · . . . · pr where pi ̸= pj for i ̸= j.
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Solution: We have that if n = pα1
1 pα2

2 . . . pαk
k is the prime factorization of n, then

φ(n) = n

k∏
i=1

(
1− 1

pi

)
=

(
n∏k

i=1 pi

)
k∏

i=1

(pi − 1) .

If - for example - αi ≥ 2 then p2i divides n, and thus pi divides φ(n). That implies that pi
divides n and n− 1, which is a contradiction.

(b) φ(n) is even for n ≥ 3.

Solution: Observe from the formula. We have that if n = pα1
1 pα2

2 . . . pαk
k is the prime

factorization of n, then

φ(n) = n

k∏
i=1

(
1− 1

pi

)
=

(
n∏k

i=1 pi

)
k∏

i=1

(pi − 1) .

Now whenever pi is a prime number not equal to 2 then pi − 1 will be even so n will be
even. Hence, the only way φ(n) is odd if n = 2k for some k (the other primes do not
appear). But then φ

(
2k
)
= 2k − 2k−1 = 2k−1. So φ

(
2k
)
is even only when k = 1 which is

when n = 2.

(c) For every natural number n, we get ∑
d|n

φ(d) = n

where the sum is taken over all divisors d that divide n.

Solution: For any d | n, consider the set [n] given by

Sd = {r ∈ [n] | gcd(r, n) = d}.

Clearly, we have that ⊔
d|n

Sd = [n].

Recall that the notation d | n means that d ”divides” n. This is simply the partitioning of
n based on what the gcd of each number is with n. Note that the Sd are disjoint so that
the sum

We will show that |Sd| = φ(n/d). Consider the set

S′
d = {r ∈ [n/d] | gcd(r, n/d) = 1}.

Note that gcd(r, n) = d ⇔ gcd(r/d, n/d) = 1. So we get a bijection from f : Sd → S′
d

given by r 7→ r/d. Clearly |S′
d| = φ(n/d) and we prove the claim. This tells us that∑

d|n

φ(n/d) = n.
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But this proves the claim since the function d 7→ d/n gives us a bijection of the following
set with itself.

{d ∈ [n]|d|n}

E6. (a) Suppose we have µ identical particles and n distinct energy levels, with n ≥ µ. In how many
ways can we distribute the particles among the levels so that there is at most one particle
per level?

Solution: For each distribution it is enough to determine which levels have one particle,
as they can only have 0 or 1. This is equivalent to count how to choose a subset of µ levels
from the n levels, which is

(
n
µ

)
.

(b) Suppose we have µ distinct particles and n distinct energy levels, with µ ≥ n. In how many
ways can we distribute the particles among the levels so that there is at least one particle
per level?

Solution: If we list the particles from 1 to µ and the energy levels from 1 to n, the asked
number corresponds to all surjective fuctions f : [µ] → [n] which was obtain in problem
E4.
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