Exercise Set Solutions #3
“Discrete Mathematics” (2025)

E1. (a) How many positive integers are there that divide 10%° or 2030 ?
Solution: Note that 1040 = 240 . 540 and 2030 = 260. 530, Consider the following sets
A:{aEN:a]1040},B:{a€N:a|2030}
We have to count |A U B|. By inclusion-exclusion principle, we have
|AUB| = |A|+ |B|-|ANB.

Remember that the number of divisors of n = p{*---p* is (a1 +1)---(ar +1). That
means, |A| =41-41 = 1681 and |B| = 61 - 31 = 1891. On the other hand,

|ANB|={aeN:a|10" and a | 20"} = {a e N:a| 2" 5%}
That means, |A N B| =41-31 = 1271. Altogether, we obtain

|AU B| = 1681 + 1891 — 1271 = 2301

(b) How many positive integers less than or equal to 385 are there such that they are not divisible
by neither of the following numbers: 5,7,11 ?

Solution: 385 = 5-7-11. Using Euler’s function (recall its definition), we obtain that

the result is ) ) )
A1==)-(1=-=)-([1—=—=)=4-6-10=24
385 < 5) ( 7) ( 11) 610 = 240

E2. Determine the number of permutations of the set [n]

(a) with exactly one fixed point, and

Solution: Let A; be the set of permutations which fix only 7. Since A; has no other fixed
points apart from ¢, we obtain that its cardinality is equal to the cardinality of the set of
all the permutations of an (n — 1)-element set with no fixed point (in fact, the set of the
other elements except i ). But, from lecture notes (section 3.2), we already know that this
number for n — 1 is

11 1
(n—l)!<2!—3!+...+(—1) 1(”‘”')

On the other hand, there are n choices for the fixed point and no two such permutations
can coincide (since it is only one fixed point). That means, the desired result is

11 1

(b) with exactly k fixed points.




Solution: Applying the same idea as for (1), we obtain

E3. How many functions f : [n] — [n] are there that are nondecreasing? That is, they satisfy

i <j=f@) < f0)
Solution: Consider the following numbers.

T = f(l) -1
x2 = f(2) — f(1)
x3 = f(3) — f(2)

zp = f(n) = f(n—1)

Tpt1 =n— f(n).

n+1
{(wl,...,xnﬂ) e 720 val :n—l}.

=1

The cardinality of this is equal to

((n +1) -Tt(_nl_ 1) - 1> _ (2:__11)

Then, we see that Z?:Jrll xn, =n — 1 and each z; > 0. Each such touple of (x1,...,2,11) gives
us a nondecreasing function. Hence, the problem amounts to simply counting the set

E4. Assume that k& > n. Prove that the number of surjective functions from [k] to [n] is given by

3 (7)1t

J=0

A\ U;L:_ll Aj, therefore by inclusion-exclusion principle

n—1 n—1 n—1 n
| — _1\n—J ~:nk _1\n—J n 'k: _1\n—J n ~k:
|A\]£J1Ag| |Ar+;< 1" ]4;) +;< ) (j)y > (j>y

j=

concluding.

E5. Prove the following.

(a) If p(n) divides n — 1 then n = p; - ... p, where p; # p; for i # j.

Solution: Let A; the set of functions from [k] to [n] taking values in a subset of cardinal j
in [n] (in other words, al the functions f : [k] — [n] such that [f([k])| < j). Thus, A ={J, 4;
represents all functions from [k] to [n]. The number of surjective functions corresponds to



(b)

(c)

Solution: We have that if n = p{"p5? ... p* is the prime factorization of n, then

k 1 n k
etm =n]] (1 - p¢> - (Hflp) [T

If - for example - «; > 2 then p? divides n, and thus p; divides ¢(n). That implies that p;

divides n and n — 1, which is a contradiction.

¢(n) is even for n > 3.

Solution: Observe from the formula. We have that if n = p{'p3?...po* is the prime

factorization of n, then

k 1 n k
etm =n]] (1 - m) - (Hflp) o1,

Now whenever p; is a prime number not equal to 2 then p; — 1 will be even so n will be
even. Hence, the only way ¢(n) is odd if n = 2* for some k (the other primes do not
appear). But then ¢ (2’“) =2k k=1 —9k=1 Go ¢ (2k) is even only when k = 1 which is

when n = 2.

For every natural number n, we get
> p(d) =n
dln
where the sum is taken over all divisors d that divide n.

Solution: For any d | n, consider the set [n] given by
Sq={r € [n] | ged(r,n) = d}.

Clearly, we have that

|_|Sd = [n]

din

Recall that the notation d | n means that d ”divides” n. This is simply the partitioning of
n based on what the gcd of each number is with n. Note that the S; are disjoint so that
the sum

We will show that |Sy| = ¢(n/d). Consider the set
S ={r €[n/d] | gcd(r,n/d) = 1}.

Note that ged(r,n) = d < ged(r/d,n/d) = 1. So we get a bijection from f : Sq — S
given by r +— r/d. Clearly |S}| = ¢(n/d) and we prove the claim. This tells us that

S (n/d) = n.

din




But this proves the claim since the function d — d/n gives us a bijection of the following
set with itself.
{d € [n]ld|n}

E6. (a) Suppose we have p identical particles and n distinct energy levels, with n > p. In how many
ways can we distribute the particles among the levels so that there is at most one particle
per level?

Solution: For each distribution it is enough to determine which levels have one particle,
as they can only have 0 or 1. This is equivalent to count how to choose a subset of p levels
from the n levels, which is (Z)

(b) Suppose we have p distinct particles and n distinct energy levels, with g > n. In how many
ways can we distribute the particles among the levels so that there is at least one particle
per level?

Solution: If we list the particles from 1 to p and the energy levels from 1 to n, the asked
number corresponds to all surjective fuctions f : [u] — [n] which was obtain in problem
FA4.



